skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Banelli, Paolo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In machine learning applications, data are often high-dimensional and intricately related. It is often of interest to find the underlying structure and Granger causal relationships among the data and represent these relationships with directed graphs. In this paper, we study multivariate time series, where each series is associated with a node of a graph, and where the objective is to estimate the topology of a sparse graph that reflects how the nodes of the graph affect each other, if at all. We propose a novel fully Bayesian approach that employs a sparsity-encouraging prior on the hyperparameters. The proposed method allows for nonlinear and multiple lag relationships among the time series. The method is based on Gaussian processes, and it treats the entries of the graph adjacency matrix as hyperparameters. It utilizes a modified automatic relevance determination (ARD) kernel and allows for learning the mapping function from selected past data to current data as edges of a graph . We show that the resulting adjacency matrix provides the intrinsic structure of the graph and answers causality-related questions. Numerical tests show that the proposed method has comparable or better performance than state-of-the-art methods. 
    more » « less